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Abstract

In an industrial setup quality measurements are taken in
multiple steps of each production chain. Often a single prod-
uct is evaluated for several steps in the production, but even
more often pooled tests are done, to evaluate the quality of
the used material or a charge. Instead of the traditional clas-
sification of sensor measurement to quality on a single pro-
cess step, the question arises, how these steps interact with
each other. Is it possible to foresee the faults of later pro-
duction steps, by analyzing data gathered earlier? Especially
in mass production this leads to unclear and fuzzy relation-
ships. The material quality might not be known for every
work piece produced but controlled in a fixed time inter-
val. The challenge of these processes is, to correctly con-
nect ground truth to feature vector by their temporal connec-
tion. In this work we show multiple steps to reach a bet-
ter classification and insight into the production process. We
gather data from a real-world environment and as a first shot,
use common machine learning methods, which are available
through public libraries. Therefore, we created a simple con-
nection between the material trace elements and quality in-
spection. Further data analysis suggested the influence of the
exact time of the quality inspection related to the measure-
ment of trace elements. We performed a significance test, to
proof the difference of time groups to each other. The iden-
tical machine learning methods were applied to these time
groups and an improvement of classification accuracy of 2%
could be detected. For feature approaches we propose an au-
tomatic split system, to find time dependent groups inside
the data and split the data accordingly.
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1 Introduction

Machine learning has been further improved to monitor
quality control in the recent years [3]. For many industrial
processes it is important to detect and recognize anomalies
in online setups [16, 15]. For an industrial environment those
methods can obtain valuable information for workers on the
floor level and management alike. There are many tools,
such as scikit-learn [9] library in python, the weka machine
learning software [21] and many more, for a fast implemen-
tation and testing proposed methods in a production envi-
ronment. Those methods excel, when a feature vector and
ground truth can be provided in a 1 to 1 relationship. These
methods are challenged by a fuzzy relationship between tar-
get vector and ground truth in a production chain. In a pro-
duction chain it is an often-proposed problem, that the qual-
ity control and the production task are not directly linked
through an exact time or identifier relation. In the process
of this chain, often unclear, disordered correlations arise, so-
called fuzzy correlations [7]. Analyzing these contexts with
Al often presents problems. The unclear and often different
structure of the data makes it difficult for Al to create feature
spaces and labels, which are the basis of prediction models.
Human knowledge and analysis of the data can help to rec-
ognize structures and to develop models. We propose a novel
approach and formulate the following question and propose
solutions in this paper:

Can fuzzy connected source target production data be cate-
gorized to support a robust prediction model?

In this paper we apply machine learning methods from pre-
vious work and open libraries to a complex production task.
The performance of these methods will be evaluated. We
perform analysis on the time dimension, to verify the signifi-
cance of time influence of an individual measurement and its
problems for the machine learning algorithms. We propose
a method, to restructure time dependent data to improve the
results of common machine learning approaches.



2 Related Work

Fuzzy logic was first defined by G. Klir in 1995 and de-
scribes a theory developed in pattern recognition to “pre-
cisely capture the imprecise”. It involves assigning numeri-
cal values to objects based on the degree to which they be-
long, using a relationship function. Based on these values,
the objects can be classified into fuzzy sets [7]. A similar
process can be applied to data in Industry 4.0. Through the
process of data mining, which discovers new, meaningful re-
lationships, patterns, and trends by reviewing large amounts
of data using pattern recognition technologies as well as sta-
tistical and mathematical methods, exciting new data is cre-
ated [18].

These novel data can form unclear and complicated rela-
tionships. Viertl Reinhard [19] gives a definition in his
book “Statistical Methods for Fuzzy Data” how to explain
this fuzzy data. “All kinds of data which cannot be pre-
sented as precise numbers or cannot be precisely classified
are called nonprecise or fuzzy. [...] Also, precision measure-
ment results of continuous variables are not precise num-
bers but always more or less fuzzy” [19]. A distinction is
made between one-dimensional fuzzy data, which represent
a measurement result of one-dimensional continuous quan-
tities (e.g. volume measurements) and vector-valued fuzzy
data, which represent measurement results in real vectors
(e.g. positions of objects in space) [19].

The process considered later represents a source target pro-
duction. At the beginning - at the source - a start process
is initialized, which runs through any sub-step to the end
point of the production - the target [2]. There is a low
amount of literature that describes more complex production
chains. Especially not the dependencies between an initial
resource, here called source, and its target product, called
target. Through the methodology of data mining, produc-
tion data from the source-target production can be recorded.
Data mining describes the collection of production data rel-
evant for objective functions, constraints, and decision vari-
ables. This recorded data is divided into dynamic and static
classes [13, 11]. In this context, according to Shin et al. [13]
dynamic data is used in manufacturing planning and opera-
tions, the data may include production/process plan, machine
monitoring, inspection, and environmental information. For
static data provided by external sources, the focus of this
step is not on data logging from equipment or data collection
from sensors, but mainly on insight into data characteristics
and relationships between different data and identifying data
sources [13].

From this arises the question: Why is the process of fault de-
tection, prediction, and prevention relevant in Industry 4.0?
This question can be answered with the two factors time and
money. In state of the art industrial companies, the aspect of
maintenance management has increased a lot in recent years
[14]. Manual methods have proven to be not future oriented,
because early failure analysis on dynamically changing fail-
ure sources and new failure types have proven to be impos-
sible [1]. New industrial processes and their novel techno-
logical paradigms provide new opportunities to improve de-
fect detection, prediction, and prevention. The goal of this
novel method and the answer to the initial question is to re-

duce the probability of sudden failures in order to reduce sub
optimal use of human resources [14, 1]. The resulting possi-
bility, however, is characterized by practical limitations. The
authors Angelopoulos et al. [1] clarify that: “This is a cru-
cial and demanding process due to the autonomous and self-
optimized operation of machines and the wealth of data that
is collected in real-time.” [1, 8] In this process, ML-based
approaches must collect large amounts of data and process
it in a timely manner to detect abnormal operation. These
approaches can be divided into data collection, data process-
ing for feature extraction, and finally fault classification [22].
Here, the last two steps depend heavily on the first step.
These must capture theoretically extensive and high qual-
ity labeled data sets. In most cases, the collected data, are
mixed with noisy data from the environment, which makes
it difficult to separate the original data set from the noise.
Therefore, it is important to perform data cleaning to im-
prove the quality of the source data. This also has a positive
effect on the false detection in the models. Paying attention
to the expert knowledge during the initialization of the learn-
ing models can increase the quality of the learning strategy.
Furthermore, problem arises in data-based modeling and fu-
sion. The reason, according to Angelopoulos et al. [1], is
that the data is vulnerable to loss, redundancy, mislabeling,
class imbalance, non-stationarity, and heterogeneity of in-
formation. In addition, models are not generalizable because
location-dependent limitations may occur. For this reason,
real-world verification of the accuracy of learning algorithms
in terms of fault prediction is essential, especially in scenar-
ios with dynamically changing environments. Finally, the
author mentions that often correlation is not carefully inves-
tigated, resulting in highly complex models that are trained
with insufficient data sets and exhibit overfitting and low in-
terpretability [1]. Time adapting models have been used in
previous works [17, 6]. Different models or models of the
same type applied to identified sub parts of the data have
been used to improve performance. Clustering training data
to built multiple prediction models instead of a single model
for a use case has been done succesfully in production lines
before[23]. With those clustering methods a significant im-
provement of performance has been reached. We aim to sim-
ilarly recognize a significant separation of the data along the
time axis, to improve common methods.

2.1 Hypotheses

In this work we aim to build a suitable prediction model
for a fuzzy connected production process. To approach this
problem we perform three steps, to show the advantages of
time dependent groups. We intend to proof the necessity
of modifications to common machine learning models, by
applying the models to fuzzy data. The time dependency
groups are analyzed for their significance and each group is
used separately in for the machine learning model to improve
the results.
Since many past works (Section 2) come to the conclusion
that applied machine learning approaches lead to a very in-
accurate model, this hypothesis is tested in the first approach.
Two ML approaches are trained and tested with the data from
an underlying use case, and the following hypotheses were
developed to evaluate the an initial approach. The ML mod-
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Figure 1. Time dependent process. From each filling a finite number if work pieces can be produced. In example, work
pieces 1 to 12 are produced with filling B while 13 to 23 are produced with filling A.

els aim to predict the error rate of each segment, as exem-
plary shown in figure 1. For each measurement we get a sin-
gle model and prediction related to a material measurement.
These results will solve as a basis compared to the prediction
of the common choice.

For the second hypothesis we test the time dependency
on production processes. By comparing the different time
groups between fuzzy connected measurements:

H1 = The time dependency groups directly influence the re-
sults of the production process.

HO = The time dependency has no influence on the results

of the production process.
From the results of our hypothesis, we will determine fit-

ting groups to split the data into, for an improved prediction.
If we can determine a significant difference between the dif-
ferent temporal sections, we can split the data to train sep-
arate ML models on the data segment. The average results
of this method will be compared to the previous results and
common choice to improve classification value.

3 Methods

3.1 Common machine learning models

As shown in Figure 1 we cannot classify each individual
work piece based on an individual material measurement, as
only the measurement for the whole filling is known. A sin-
gle work piece could not be differentiated from the previ-
ous or following work piece of the same material measure-
ment. Therefore we use classification, to classify the whole
segments performance, i.e work pieces 1 to 12 for the sen-
sor measurements B and 13 to 23 for the sensor measure-
ments A 1. The classification is performed on the percentage
of errors, which are sorted into the classes good (100 per-
cent good), and faulty (less than 98% good). The SVM [10]
and Decision Tree [12] approaches are used to classify faulty
work pieces based on measurement data. For pre-processing,

the data set is modified to get a one-to-one relation between
the source and the target. By analyzing transport times and
measurement times each fault percentage of the quality in-
spection segment is linked to the feature vector of the mea-
surement values. To further reduce the features the Variance
Threshold method was used [4]. The SVM and Decision
Tree, can be executed with a variety of parameters. To deter-
mine the best parameters, there is the hyper parameter opti-
mization approach [5]. This approach was also used in this
work to generate optimal results. We use a k-Fold Cross-
Validation to evaluate the results. This method allows us,
to get close to real results, as in the following setting, the
trained model would include all machines and workpieces of
the past, to classify those that are upcoming.

Table 1. Listing of the average and minimum as well as
maximum values of the distance to the last/next measur-
ing point.

Distance to next
measuring point

Distance to last
measuring point

Average 164.96 140.89
Standard deviation 113.24 88.54
Min 3.85 0.0
Max 2849.08 3730.96

3.2 Proofing time dependency

We initially define the time dependency. Two similar tem-
poral values can be used in this scenario. One of them can be
the elapsed time since the last relevant measurement for the
relevant work pieces. The starting point is the time 3 when
the part is produced. From the measuring point ml to the
finished part, the following time sequences are run through:
From time point m/ to time point ¢/ the material is still in
the furnace; From time point ¢/ to time point 72 the alloy
is transported to the machine; From time point 72 to time



point #3 the alloy is in the machine and remains there un-
til the production of the investigated product (see Figure 2).
The sum of all listed times results in the distance to the last
measuring point. Table 1 shows the average values for this
distance. Another value can be the time to the next mea-
suring point. The approach aims at the temporal split of
the past time up to the last measuring point. The time up
to the last measuring point is determined for all data points
(see table 1). This time is divided into 60-minute intervals
for the exemplary case shown in this work. This results
in the following segments: [0-60];[60-120];[120-180];[180-
2401;[240-300];[300-open]. We will treat each of these in-
tervals of as a group for the Chi-squared test [20]. The com-
parison for each group is based on the number of errors and
non-errors for each group. A comparison of the observed
and expected values will proof or disprove the hypotheses.

3.3 Predicting Split Data

If we can proof a significant difference between the time
groups, we can split the data for training and testing into
these groups. Separate ML models will be used for the clas-
sification of each upcoming work piece. For the example
case in Figure 1 this would result in a Model, which is trained
with segment Al and used to classify B1, trained with A2
to classify B2 and so forth. The SVM [10] and Decision
Tree [12] approaches will be used with identical preprocess-
ing setups, to achieve comparable results.

4 Study and Data
Melting and taking the measured data

The first step operates at the level of furnaces. In the
industrial setup there are 9 furnaces in total, which are
identified with unique IDs in the interval [1-9]. Different
types of parts with different alloys are cast in the system,
so not all furnaces contain the same alloy. During the
process, at a certain time ¢;, a sample of the alloy m; is
taken and evaluated. From the sample 25 measuring points
are extracted, which represent the individual trace elements
of the metals in the alloy. The quantity of trace elements is
given as a percentage, which includes only positive values
in the range [0-100]. This results in a starting measurement
at the source, which is relevant for the further course of the
process until a new measurement is carried out. However,
there is an exception that in a fraction of the processes,
based on the results of the extracted measuring points, a later
re-alloying takes place. This process adds the first fuzzy
component to the observed system, as it cannot clearly be
identified, if the inspection measurements are still identical
at a given time between f; and the next measurement 7.

Removal of the alloy and transport to the machine

The next step maps the logistics. For this purpose, at a
certain time f, a part of the alloy in the furnace is taken
out and transported to a suitable machine (depending on
the alloy). One or two transports can be realized from
such an extraction of the alloy. Due to the local conditions
the transport task can take different time. For example,
transport trans; arrives at Machine [ at time t3, while
transport trans, arrives at Machine 2 at a later time #4.

Pouring the product

In the next step, different parts are produced on different
machines, which are uniquely identified by an ID. The parts
can be distinguished by a group of parts. The parts are
produced one by one, so the process takes several minutes.
After the production of a product, at time 5, it is checked
whether the part is defective, in which case the defect code is
stored. Since each group of parts has different complexity in
the casting, the processing time may vary. As the machines
must guarantee a running production, a new alloy arrives
before the old alloy is used up. Thus, a fluent ratio needs to
be assumed. This means that some percentage of the alloy
stems from the previous transport and thus belongs to the
previous measured data and some percentage belongs to the
new transport and the new measured data. In an ideal timing
this relation should be around 45-55 but can vary due to
transport limitations.

Record the measurement data

At time #4 a new measurement m, is performed, in which
again the 25 trace elements are measured in percentage.
This can be used as a reference measurement to determine
changes in the alloy.

4.1 Data

Data collection was done over a two-year interval, from
the 14th of august 2019 to the 13th of august 2021. Data was
sampled according to the processes and not on an equidistant
sampling frequency. For the measurement of product qual-
ity, we got 7236905 evaluations between 660 product types
which were produced on 49 different machines. The quality
assessment resulted in 7074034 and 162871 erroneous prod-
ucts, which were divided into 8 error categories. The ma-
terial analysis was done with 45083 measurements over the
two-year time frame from 7 supply machines. The material
was transported from the supply machines to the production
machines in 288200 transport processes. This results in a
data set of 288200 measurement vectors, which are used to
predict the error rate of upcoming work pieces.

5 Result

5.1 Common machine learning approaches
We split the data into a test and training set. As 90 percent
was used for training, the rest of the data set was used to test
the classification, in the previously described k-Fold Cross-
Validation. The test set includes the IO class 44448, the other
classes 22782 samples. The selection of the most common
class would therefore result in an accuracy of 66.11%. The
classification results for the Decision Tree are 70.84% and
for the Support Vector Machine 71.10%. Classification re-
sults did not improve, when using the machine and the work-
piece type to the feature vector.
The data from the common approach was split into the time
classes. For each class a classification was performed the
classification results for the Decision Tree range from are
72.69% to 73.24 % and for the Support Vector Machine
73.04% to 74.85%.

5.2 Significance of time dependency
The table 2 shows the distribution of number of defects
in relation to the total production quantity in a certain time
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Figure 2. Representation of the considered melt casting process. Each measuring point can be attributed to multiple
fillings of machines. The time of transportation and time until production, are also used for analysis.

Table 2. Illustration of the different time intervals from Challenge 2 and the frequency of errors as well as the total
number of parts.

Number of errors
(% of total errors)
[0-60] 11042 (6,9%) 11042:424788 (2,5%:97,5%)

(60-120] 42589 (26,7%) 42589:1774196 (2,3%:97,7%)
(120-180] | 50810 (31,9%) 50810:2370524 (2,0%:98,0%)
(180-240] | 32042 (20,1%) 32042:1455497 (2,1%:97,9%)

Category Ratio error / no error (Ratio in %)

(240-300] | 12929 (8,1%) 12929:561827 (2,2%:97,8%)
>300 9550 (6,0%) 9550:357876 (2,5%:97,5%)

interval. The first column of the table lists the time intervals Table 3. Observed.Va!ues .Of time dependency classes and

defined in Challenge 2. The second column shows the errors Error, No Error distribution.

that occurred per interval. The percentage refers to the pro- Error  No Error

0-60 11.042 424.788 435.830
60-120 | 42.589 1.774.196 | 1.816.785
Observed | 120-180 | 50.810  2.370.524 | 2.421.334

portion in relation to the total number of errors that occurred.
The next column shows the ratio faults occurred to parts pro-
duced correctly. In the column Number of errors one can
see an increase of errors with increasing time distance from values 180-240 | 32.042  1.455.497 | 1.487.539
the measurement. A variance in the individual time classes 240-300 | 12.929 561.827 574.756
and the percentages of error can be seen. This significant >300 9.550 357.876 367.426
difference is detected with a Chi-Square test. Here the col- 158.962  6.944.708 7.103.670

umn Number of errors from the table 2 is taken as observed

values for the test. The expected values are obtained from Table 4. Expected‘Val.ues })f time dependency classes and
the (rowsum % columnsum)/samplesize . The observed and Error, No Error distribution.
expected values for the chi square method can be found in Error  No Error
Table3 and 4. The Chi-Square test results in a p-value of 0-60 9.753 426.077 435.830
0.000029. The p-value is less than the significance level of o 60-120 | 40.655  1.776.130 | 1.816.785
= 0.05, thus the result is statistically significant. This means Expected | 120-180 | 54.183  2.367.151 | 2.421.334
that the time classes and the error proportions differ signifi- values | 180-240 | 33287  1.454.252 | 1.487.539
cantly. 240-300 | 12.862  561.894 | 574.756

_ ) >300 | 8222 359204 | 367.426
6 Discussion 158.962  6.944.708  7.103.670

The Decision Tree and Support Vector machine outper-
form the Common Choice for the direct application of the
models from the libraries. This shows, those common li-



braries can often be applied with their proposed pipelines
and yield improvement for a supervised system. With low
time effort, those libraries provide an initial look, of how
good the data is suited from preprocessing to evaluation.
The splitting and testing of time intervals as groups in a Chi-
squared test resulted in a significant difference between each
class. Therefore, each class was analyzed and classified in-
dividually. This shows the improvement between a non-time
dependent analysis and the machine learning success after
splitting the data. The test for significance can be used for
different groupings for the data. We decided to group by
hour in this example case for a proof of concept.

The Decision Tree and Support Vector Machine both im-
proved by above by around 2% in average for each segment.
The strong significance of differentiation between the seg-
ments also showed in the classification results, and the im-
proved ML models perform better. This demonstration of
significance provides additional information, about unknown
temporal dependencies inside a process, where those depen-
dencies were not known previously.

7 Conclusions and Future Work

Through splitting the data according to its time depen-
dency, the classification results were improved. Overall both
approaches, deliver around 30% wrong results and would
need to be further improved to contribute valuable informa-
tion to improve the process. The approach did yield improve-
ment and therefore can further be tested on additional setups.
For this we started to further gather data of climate dependent
measurement and evaluation systems, to proof the approach
in a different field.
To further modify our split of the data, beyond a testing
setup, where the data is split into pre given groups, such as
one hour in the proposed approach, we plan on implement-
ing an automatic splitting. Therefore, a time stream data can
be split into categories iterative, to find the most different
groups, by repeatedly testing for their significance until the
best split groups are found.
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